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New criterial relations are obtained with allowance for the influence of  thermal gradient mass transfer, 
phase transitions and Kossovich number on the inertia of  heat and mass transfer processes, 

The generalized system of differential transport equations for the one-dimensional problem has the form [1] 

OFoi O~ z + ~ a t / i , j = l , 2  . . . . .  n / '=l 

( i)  

Thus, for heat and mass transfer in capillary-porons materials 

m, i, ] = 1, 2; @~1)= T; O~(D = O; 

K(D = 1 4- g o * P n  Lu; K~2 D = - -  k o * L u ;  K2ul ) = - -  LuPn ;  K ~  ) = Lu. 11 (2) 

For a binary gas mixture 

Of 2) --= t*; e~ 2) = / ' ;  

ri(2) t7(2) v(2) v(z) DuLe;  ~2~ geSo; Le. (3) ,~11 = 1 + DuSoLe;  1\12 = = 1 \ 2 2  ~ -  

The physical meaning of the parameters entering into Kij was adequately explained in [1]. At the same time, 
certain questions concerning the criteria determining the rate of  variation of the transfer potential fields require closer 
study. It was pointed out in [1] that the inertia criteria of the transfer potential fields may be represented by the Lewis 
and Lykov numbers Le and Lu. This is no doubt true in connection with unrelated transfer processes. For coupled trans- 
fer however, certain other criteria may be expected to influence the inertia of the corresponding fields. Thus, in heat 
and mass transfer in porous materials, the parameter s and the Ko and Pn numbers must have an appreciable influence 
on the rate of establishment of steady moisture content and temperature profiles. Indirect evidence of this, noted in [1], 
is the lack of similarity of the temperature and potential fields when Lu = 1. Of course, a similar effect is also observed 
in connection with heat and mass transfer in binary mixtures. 

We note that, even from a simple analysis of the initial differential equations (1), some positive information on 
the problem in question may be obtained. As a preliminary exampIe, let us examine the system of equations for bound- 
ary-layer  momentum and heat transfer in a zero-gradient flow of a viscous incompressible fluid over an isothermal plane 
surface (neglecting viscous dissipation and variation of the thermophysical properties of the liquid with temperature): 

du a2u 

dt @2 ' 

dT v O2T 

dt Pr  @2 

(4) 

, ( 2 )  

where d/dt is a substantive derivative. 

It follows at once from an analysis of (4) and (5) that when Pr = 1 the temperature and velocity fields in the 
boundary layer are similar, the rates of establishment of  steady-state u and T (for example, for an isothermal semi-  
infinite plate brought impulsively from rest into uniform motion) being the same [2]. We may Further determine, from a 
more detailed analysis, that when Pr > 1 the rate of establishment of a steady-state velocity field exceeds that for t em-  
perature, while the contrary holds true when Pr < 1. 

On the basis of a similar kind of  qualitative reasoning, which may be confirmed quantitatively by applying the 
integral methods of boundary layer theory to the solution of  heat and mass transfer problems, it may  be shown that, for 
given boundary conditions of  the first Idnd, the criterion determining the inertia of the temperature and moisture con- 
tent fields is a complex one of the type 
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All three cri teria follow from inequali t ies  

of propagation of potentials  Ol m) and @~rn). 

the corresponding equations (1) for i, j = 1, 2: 

�9 ' ' )  

, = 

+ > K(m) 
< " "21 @ K~g z), which determine the ratio of the rates 

This result may  be obtained by means of term by term subtraction of 

(7) 
0(I~(m) - -  O(m) ) 

, ) 

0 F o  ~ - -  ~\12 )V "2  " 

Hence, when K[~ n) @ KI~ n) = K~'~ ) -t- K ~  n) (which corresponds to p(m) = 1), Eqs. (1) and (2) are equivalent .  

A more accurate  analysis permits conclusions to be drawn about coupling between transfer processes whenp (m) > 1. 
It may  be shown that  when p(m) > 1, the rate of propagation of potent ia l  %,n) if greater  than that  for Olml, while 
the contrary holds true when/~(m) < 1. 

p(m is determined by the signs of the phenomenological  coefficients The choice of  one or other of  the cri teria ) 
K~ m) and K (m) in the Ousager equations, but also by the obvious need for a passage to the l imi t  of the form: 

= L u ,  

I* ~ ,=K, ,=o = Le. (8) 

The criterion p(m) does not satisfy the last condition and must therefore be discarded. It may be shown that when K (m) > 

>O and K~n) > O, the cntermn ;~m)must be used, while when K(m)< 0and K~n) < 0, the criterion ;ll m) is physically 
correct ?. Thus, taring account of (2) and (3), we obtain, for heat and mass transfer in a binary gas mixture with (So > 
> O, Du > 0) and in a porous medium,  respectively,  

~2) = Le(1  q-  So)/[ l  + DuLe(1  + So)l, (9) 

~ t )  = Lu (I  + Ko*)/[1 q- L u P n  (1 + Ko*)]. ( 10 )  

Thus, in conformity with (9) and (10), the rates of variat ion of the heat  and mass transfer potent ial  fields are de-  
termined not only by the Lu and Le numbers but by the Ph and Ko* numbers for heat  and mass transfer in porous ma te r i -  
aIs and by the Du and So numbers for heat  and mass transfer in binary gas mixtures. In this case pl  = Lu in the absence 
of thermal  gradient mass transfer and phase transitions. Similar ly,  p2 = Le in the absence of thermal  diffusion and the 

Dufour effect. This confirms the ear l ier  conclusion that the Lu and Le numbers character ize  the inert ia of  potent ia l  

fields in unrelated transfer processes, i . e . ,  when there are no cross terms in the Onsager equations. 

It is to be expected that, when boundary conditions of  the second and third kinds are specified,  the expression for 
the inert ia cri teria will  contain the corresponding cri teria present in the boundary conditions (Posnov numbers and 
Kirpichev heat  and mass transfer numbers for boundary conditions of the second kind, and Blot heat  and mass transfer 
numbers for conditions of the third kind). 

NOTATION 

| - general ized transfer potential;  g and y - coordinates; Kij - phenomenological  transfer coefficients in the 
Onsager equations; T - temperature; p* - vapor pressure; u - veloci ty  component; v - viscosity; t - t ime; Y - form 
factor; Lu - Lykov number; Pn - Posnov number; Le - Lewis number; Du - Dufour number; So - Soret number; Pr - 
Prandtl number; Fo - Fourier number; Ki - Kirpichev number; Ko - Kossovich number; ~ - phase transition parameter; 

Ko* : ~ Ko. 
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]'One may reach the same conclusionby requiring that p(m) be greater  than zero for a l l  positive values of the arguments.  
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